35^2=(g-11)(g-8)

Simple and best practice solution for 35^2=(g-11)(g-8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 35^2=(g-11)(g-8) equation:



35^2=(g-11)(g-8)
We move all terms to the left:
35^2-((g-11)(g-8))=0
We add all the numbers together, and all the variables
-((g-11)(g-8))+1225=0
We multiply parentheses ..
-((+g^2-8g-11g+88))+1225=0
We calculate terms in parentheses: -((+g^2-8g-11g+88)), so:
(+g^2-8g-11g+88)
We get rid of parentheses
g^2-8g-11g+88
We add all the numbers together, and all the variables
g^2-19g+88
Back to the equation:
-(g^2-19g+88)
We get rid of parentheses
-g^2+19g-88+1225=0
We add all the numbers together, and all the variables
-1g^2+19g+1137=0
a = -1; b = 19; c = +1137;
Δ = b2-4ac
Δ = 192-4·(-1)·1137
Δ = 4909
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{4909}}{2*-1}=\frac{-19-\sqrt{4909}}{-2} $
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{4909}}{2*-1}=\frac{-19+\sqrt{4909}}{-2} $

See similar equations:

| j/4–15=17 | | 5w=5w+3 | | 2^x=288 | | 3(a+1)+2a−6=12 | | 4g+7=5g-1-3g | | -4(1-8k)+7=131 | | y=4=4 | | 2=142/n+4 | | 2/5x+6=16 | | d/3+18=15 | | 6x+7+4x-3=4x-12-2x+8 | | 3(x+7)=2(3x-1)+3(4-2x)-1 | | a-8+8=1 | | 12=43(x+6) | | -7-g=28 | | 3(+2x-1)=2(x+5) | | 4x+5+3x=5x+18-3 | | -5x+17x=16x | | 5(f-4)=9 | | x=7+0.8/1.6 | | -6+3(2x+1)-4x=2-4(x-1)+3 | | 4(x+3)+x(x+3)=7(x+4) | | 5m-5=5(m-1) | | 6v+6(3-v)=18 | | 2x-4-2=2 | | 74x-37=74x-36 | | -(8x+5)=-15 | | -187=-17x | | -15=+3+4y | | 2x+19=2x+33 | | 38=t-0.81 | | -2x-22=-12 |

Equations solver categories